Ripple Effects of Noise on Corporate Investment

Olivier Dessaint (Toronto)
Thierry Foucault (HEC)
Laurent Frésard (Maryland, Lugano and SFI)
Adrien Matray (Princeton)

October 2017

Motivation - Question

- Stock prices sometimes deviate from fundamentals
 - Transient shocks to demand can generate price fluctuations above and beyond changes due to fundamentals
 - Various reasons: noise trading, liquidity needs, or slow-moving capital (e.g. Duffie (2010)).

- Questions: Do non-fundamental variations in stock prices (noise) affect the real economy?
 - ▶ Do non-fundamental variation in prices influence corporate investment?
 - Does this matter for the allocation of resources?
 - ► If yes, through which channels?

What we know and don't know

- Existing research: Non-fundamental changes in prices affect corporate investment through:
 - ► Financing channel (e.g., positive non-fundamental shock relaxes constraints)
 - Managerial incentive channel (e.g., negative shock increases takeover likelihood)
- Our paper: Is there a direct (faulty) informational effect?
 - Managers rely on stock prices as a source of information
 - Imperfect ability to distinguish noise from fundamentals (but rational)
 - ▶ Noisy prices + signal extraction problem \Rightarrow real effects
 - Lead to (ex-post) inefficient decisions and possible corrections
 - Faulty Informant Hypothesis (Morck, Shleifer, and Vishny (1990))

What we know and don't know

- Existing research: Non-fundamental changes in prices affect corporate investment through:
 - ► Financing channel (e.g., positive non-fundamental shock relaxes constraints)
 - Managerial incentive channel (e.g., negative shock increases takeover likelihood)
- Our paper: Is there a direct (faulty) informational effect?
 - Managers rely on stock prices as a source of information
 - ► Imperfect ability to distinguish noise from fundamentals (but rational)
 - Noisy prices + signal extraction problem ⇒ real effects
 - Lead to (ex-post) inefficient decisions and possible corrections
 - ► Faulty Informant Hypothesis (Morck, Shleifer, and Vishny (1990))

Empirical challenges

- ▶ Stock prices reflect information that managers may already know
- Non-fundamental variations affect cost of capital and managers' incentives (e.g. take-over risks, lay-offs)
- ▶ Our approach (guided by a model for more structure):
 - Decompose stock prices between fundamental and non-fundamental using exogenous shocks to prices
 - ► Focus on non-fundamental shocks to peers' stock prices
- Strong support for the faulty informant role of stock prices
 - ▶ 1 sd decrease in peers' noise ⇒ 1.8 p.p. decrease in investment (5% mean)
 - Truly a faulty informant channel (we try hard to reject this...)

Empirical challenges

- ▶ Stock prices reflect information that managers may already know
- Non-fundamental variations affect cost of capital and managers' incentives (e.g. take-over risks, lay-offs)
- ▶ Our approach (guided by a model for more structure):
 - Decompose stock prices between fundamental and non-fundamental using exogenous shocks to prices
 - ► Focus on non-fundamental shocks to peers' stock prices
- Strong support for the faulty informant role of stock prices
 - ▶ 1 sd decrease in peers' noise ⇒ 1.8 p.p. decrease in investment (5% mean)
 - ► Truly a faulty informant channel (we try hard to reject this...)

Implications

- ▶ Stock market is <u>not</u> a side-show, it matters for the real economy
- ► Managers rationally use stock prices, but cannot perfectly filter out the noise (no evidence so far...)
- ► Limited signal extraction ability can have real consequences
- Non-fundamental variations in stock prices does not only affect small (constrained) firms, and at risk of being acquired
- ► Amplification effects through peers' stock prices (i.e., "ripple effects")
- ▶ <u>Bottom line</u>: Ex-ante optimal for managers to follow noisy signals, but lead to ex-post inefficient outcomes

Literature

1. Asset prices informativeness \Rightarrow Real Decisions

- ► Theory: Dow and Gorton (1997), Subrahmanyam and Titman (1999), Goldstein and Guembel (2008) or Albagli, Hellwig and Tsyvinski (2014).
- Empirics: Chen, Goldstein, and Jiang (2006), Bakke and Whited (2010), or Foucault and Fresard (2014)
- ► Macro: David, Hopenhayn and Venkateswaran (2016)

2. Non-fundamental shocks ⇒ Firm Investment

- ► Capex: Baker, Stein, and Wurgler (2003), Hau and Lai (2013)
- ► M&A: Edmans, Goldstein, and Jiang (2012)
 - Always a cost of capital / managers' incentives story

Model: Timing

▶ At date 1, Firm *i* has a growth opportunity whose payoff at date 2 is:

$$G(K_i, \widetilde{\theta}_i) = \widetilde{\theta}_i K_i - \frac{K_i^2}{2}$$

- \triangleright K_i is the size of the investment in the growth opportunity
- $ightharpoonup \widetilde{\theta}_i$:
 - lacktriangle Marginal productivity of investment (i.e., "fundamental") unknown at t=1
 - ▶ Uncertain $\widetilde{\theta}_i \sim \mathcal{N}(0, \sigma_{\theta_i}^2)$
- ▶ Date 1, manager chooses K_i to maximize expected payoff conditional on information (Ω_1)
- ▶ K_i^* solves: $Max_{K_i} E(G(K_i, \widetilde{\theta}_i) | \Omega_1) = E(\widetilde{\theta}_i | \Omega_1) K_i \frac{K_i^2}{2}$
- ▶ **FOC**: $K_i^*(\Omega_1) = \mathsf{E}(\widetilde{\theta}_i | \Omega_1)$

Model: Information Structure

- Manager has access to several signals:
 - 1. Private signal about the fundamental: $s_m = \widetilde{\theta_i} + \chi_i$
 - 2. Signal contained in firm i's stock price: $P_i = \widetilde{\theta}_i + u_i$ where the noise (or non-fundamental) component is u_i
 - 3. Signal contained in peer's stock price: $P_{-i} = \widetilde{\theta}_i + u_{-i}$ where the noise component is u_{-i}
 - 4. Information about the noise in firm i's stock price: $s_{u_i} = u_i + \eta_i$
 - 5. Information about the noise in peer's stock price: $s_{u_{-i}} = u_{-i} + \eta_{-i}$
- ► Errors in the manager's signals $(\chi, u_i, u_{-i}, \eta_i, \eta_{-i})$ are normally distributed (with zero means) and independent from each other and $\widetilde{\theta}_i$
- ▶ Nest perfect information on noise or no information at all

$$\mathcal{K}_{i}^{*}(\Omega_{1}) = \mathsf{E}(\widetilde{\theta}_{i} \mid \Omega_{1}) = \mathsf{a}_{i} \times \mathsf{s}_{\mathsf{m}_{i}} + \mathsf{b}_{i} \times \mathsf{P}_{i} + \mathsf{c}_{i} \times \mathsf{s}_{\mathsf{u}_{i}} + \mathsf{b}_{-i} \times \mathsf{P}_{-i} + \mathsf{c}_{-i} \times \mathsf{s}_{\mathsf{u}_{-i}}$$

- ▶ where a_i , b_i , c_i , b_{-i} , c_{-i} are functions of the variance of each signal
- 1. Manager's private information perfect: $b_i = c_i = b_{-i} = c_{-i} = 0$
 - ▶ Manager observes $\widehat{\theta}$ and ignores stock prices $(a_i > 0)$
- Manager's private information imperfect:
 - ▶ $b_i > 0$ and/or $b_{-i} > 0$ if prices are informative (manager use prices)
- 3. Manager's cannot perfectly detect noise in prices
 - $ightharpoonup c_i < 0$ (uses his info to filter out noise in prices)
- ▶ K_i^* depends on signal about the noise $(s_{u_i} \text{ and } s_{u_{-i}})$ even though this signal is uninformative about $\widetilde{\theta}$

$$\mathsf{K}_{i}^{*}(\Omega_{1}) = \mathsf{E}(\widetilde{\theta}_{i} \mid \Omega_{1}) = \mathsf{a}_{i} \times \mathsf{s}_{\mathsf{m}_{i}} + \mathsf{b}_{i} \times \mathsf{P}_{i} + \mathsf{c}_{i} \times \mathsf{s}_{\mathsf{u}_{i}} + \mathsf{b}_{-i} \times \mathsf{P}_{-i} + \mathsf{c}_{-i} \times \mathsf{s}_{\mathsf{u}_{-i}}$$

- ▶ where a_i , b_i , c_i , b_{-i} , c_{-i} are functions of the variance of each signal
- 1. Manager's private information perfect: $b_i = c_i = b_{-i} = c_{-i} = 0$
 - Manager observes $\widetilde{\theta}$ and ignores stock prices $(a_i > 0)$
- 2. Manager's private information imperfect:
 - ▶ $b_i > 0$ and/or $b_{-i} > 0$ if prices are informative (manager use prices)
- 3. Manager's cannot perfectly detect <u>noise</u> in prices
 - $lacktriangledown c_i < 0$ (uses his info to filter out noise in prices)
- ▶ K_i^* depends on signal about the noise $(s_{u_i}$ and $s_{u_{-i}})$ even though this signal is uninformative about $\widetilde{\theta}$

$$K_i^*(\Omega_1) = \mathsf{E}(\widetilde{\theta}_i | \Omega_1) = \mathsf{a}_i \times \mathsf{s}_{\mathsf{m}_i} + b_i \times P_i + c_i \times \mathsf{s}_{\mathsf{u}_i} + b_{-i} \times P_{-i} + c_{-i} \times \mathsf{s}_{\mathsf{u}_{-i}}$$

- ▶ where a_i , b_i , c_i , b_{-i} , c_{-i} are functions of the variance of each signal
- 1. Manager's private information perfect: $b_i = c_i = b_{-i} = c_{-i} = 0$
 - Manager observes $\widetilde{\theta}$ and ignores stock prices $(a_i > 0)$
- 2. Manager's private information imperfect:
 - $b_i > 0$ and/or $b_{-i} > 0$ if prices are informative (manager use prices)
- 3. Manager's cannot perfectly detect noise in prices
 - ▶ $c_i < 0$ and/or $c_{-i} < 0$ (uses his info to filter out noise in prices)
- ▶ K_i^* depends on signal about the noise $(s_{u_i} \text{ and } s_{u_{-i}})$ even though this signal is uninformative about $\widetilde{\theta}$

$$K_i^*(\Omega_1) = \mathsf{E}(\widetilde{\theta}_i | \Omega_1) = \mathsf{a}_i \times \mathsf{s}_{\mathsf{m}_i} + \mathsf{b}_i \times \mathsf{P}_i + \mathsf{c}_i \times \mathsf{s}_{\mathsf{u}_i} + \mathsf{b}_{-i} \times \mathsf{P}_{-i} + \mathsf{c}_{-i} \times \mathsf{s}_{\mathsf{u}_{-i}}$$

- ▶ where a_i , b_i , c_i , b_{-i} , c_{-i} are functions of the variance of each signal
- 1. Manager's private information perfect: $b_i = c_i = b_{-i} = c_{-i} = 0$
 - Manager observes $\widetilde{\theta}$ and ignores stock prices $(a_i > 0)$
- 2. Manager's private information imperfect:
 - $b_i > 0$ and/or $b_{-i} > 0$ if prices are informative (manager use prices)
- 3. Manager's cannot perfectly detect <u>noise</u> in prices:
 - lacktriangledown $c_i < 0$ (uses his info to filter out noise in prices)
- $ightharpoonup K_i^*$ depends on signal about the noise $(s_{u_i} \text{ and } s_{u_{-i}})$ even though this signal is **uninformative** about $\widetilde{\theta}$

$$K_i^*(\Omega_1) = \mathsf{E}(\widetilde{\theta}_i | \Omega_1) = \mathsf{a}_i \times \mathsf{s}_{\mathsf{m}_i} + b_i \times P_i + c_i \times \mathsf{s}_{\mathsf{u}_i} + b_{-i} \times P_{-i} + c_{-i} \times \mathsf{s}_{\mathsf{u}_{-i}}$$

- ▶ where a_i , b_i , c_i , b_{-i} , c_{-i} are functions of the variance of each signal
- 1. Manager's private information perfect: $b_i = c_i = b_{-i} = c_{-i} = 0$
 - Manager observes $\widetilde{\theta}$ and ignores stock prices $(a_i > 0)$
- 2. Manager's private information imperfect:
 - $b_i > 0$ and/or $b_{-i} > 0$ if prices are informative (manager use prices)
- 3. Manager's cannot perfectly detect <u>noise</u> in prices:
 - lacktriangledown $c_i < 0$ (uses his info to filter out noise in prices)
- ▶ K_i^* depends on signal about the noise $(s_{u_i} \text{ and } s_{u_{-i}})$ even though this signal is **uninformative** about $\widetilde{\theta}$

$$I_{i} = \overbrace{\alpha S_{m}}^{\text{Private Signal}} + \overbrace{\gamma_{0} U_{i} + \gamma_{1} (P_{i} - U_{i})}^{\text{Firm Stock Price}} + \overbrace{\beta_{0} U_{-i} + \beta_{1} (P_{-i} - U_{-i})}^{\text{Peers' Stock Price}}$$

- Null Hyp: "No ripple effect of noisy stock price"
 - Inv. to noise sensitivity $\Rightarrow \beta_0 = 0$
 - i Managers perfectly informed
 - ii Managers perfectly filter out noise
- ▶ Reject of the null = "Faulty informant channel" ⇒ 3 predictions:
 - 1. $\beta_0 > 0$
 - 2. $\beta_1 > \beta_0$ (managers can filter out some noise)
 - 3. β_0 Δ with manager information (\Downarrow) and stock price informativeness (\Uparrow)
- \Rightarrow $\$ Focus on $oldsymbol{peers'}$ $oldsymbol{stock}$ $oldsymbol{price}$ to mitigate alternative $oldsymbol{stock}$

$$I_{i} = \overbrace{\alpha S_{m}}^{\text{Private Signal}} + \overbrace{\gamma_{0} U_{i} + \gamma_{1} (P_{i} - U_{i})}^{\text{Firm Stock Price}} + \overbrace{\beta_{0} U_{-i} + \beta_{1} (P_{-i} - U_{-i})}^{\text{Peers' Stock Price}}$$

- ► Null Hyp: "No ripple effect of noisy stock price"
 - ▶ Inv. to noise sensitivity $\Rightarrow \beta_0 = 0$
 - i Managers perfectly informed
 - ii Managers perfectly filter out noise
- ▶ Reject of the null = "Faulty informant channel" ⇒ 3 predictions:
 - 1. $\beta_0 > 0$
 - 2. $\beta_1 > \beta_0$ (managers can filter out <u>some</u> noise)
 - 3. $\beta_0 \Delta$ with manager information (\Downarrow) and stock price informativeness (\Uparrow)
- \Rightarrow Focus on $\mathit{peers'}$ stock price to mitigate alternative $\mathit{stories}$

$$I_{i} = \overbrace{\alpha S_{m}}^{\text{Private Signal}} + \overbrace{\gamma_{0} U_{i} + \gamma_{1} (P_{i} - U_{i})}^{\text{Firm Stock Price}} + \overbrace{\beta_{0} U_{-i} + \beta_{1} (P_{-i} - U_{-i})}^{\text{Peers' Stock Price}}$$

- ▶ Null Hyp: "No ripple effect of noisy stock price"
 - ▶ Inv. to noise sensitivity $\Rightarrow \beta_0 = 0$
 - i Managers perfectly informed
 - ii Managers perfectly filter out noise
- ▶ Reject of the null = "Faulty informant channel" ⇒ 3 predictions:
 - 1. $\beta_0 > 0$
 - 2. $\beta_1 > \beta_0$ (managers can filter out <u>some</u> noise)
 - 3. β_0 Δ with manager information (\Downarrow) and stock price informativeness (\Uparrow)
- \Rightarrow Focus on **peers' stock price** to mitigate alternative stories

$$I_{i} = \overbrace{\alpha S_{m}}^{\text{Private Signal}} + \overbrace{\gamma_{0} U_{i} + \gamma_{1} (P_{i} - U_{i})}^{\text{Firm Stock Price}} + \overbrace{\beta_{0} U_{-i} + \beta_{1} (P_{-i} - U_{-i})}^{\text{Peers' Stock Price}}$$

- ▶ Null Hyp: "No ripple effect of noisy stock price"
 - ▶ Inv. to noise sensitivity $\Rightarrow \beta_0 = 0$
 - i Managers perfectly informed
 - ii Managers perfectly filter out noise
- ▶ Reject of the null = "Faulty informant channel" ⇒ 3 predictions:
 - 1. $\beta_0 > 0$
 - 2. $\beta_1 > \beta_0$ (managers can filter out <u>some</u> noise)
 - 3. β_0 Δ with manager information (\Downarrow) and stock price informativeness (\Uparrow)
- ⇒ Focus on **peers' stock price** to mitigate alternative stories

Step 1: Empirical Proxy for Non-Fundamental Shock

- ▶ Use Mutual Funds Fire-Sales as <u>non-fundamental</u> shocks to prices (U_i and U_{-i})
 - Fire sales → stock prices to deviate from its fundamental values then mean-revert
- ▶ Mutual Funds Hypothetical Sales (Edmans Goldstein, and Jiang, 2012)
 - ► Focus on extreme flows (> 5% of funds' assets)
 - Assume mutual funds keep their portfolio <u>constant</u> (We do not use real trades!)
 - Magnitude of trades purely determined by size of outflow
 - ▶ MFHS < 0 and cov(MFHS,P)>0
- Key assumption: Mutual funds hypothetical trading not based on funds private information about the firms' fundamentals

Step 1: Empirical Proxy for Non-Fundamental Shock

- ▶ Use Mutual Funds Fire-Sales as <u>non-fundamental</u> shocks to prices (U_i and U_{-i})
 - ► Fire sales → stock prices to deviate from its fundamental values then mean-revert
- ▶ Mutual Funds Hypothetical Sales (Edmans Goldstein, and Jiang, 2012)
 - ► Focus on extreme flows (> 5% of funds' assets)
 - Assume mutual funds keep their portfolio <u>constant</u> (We do not use real trades!)
 - Magnitude of trades purely determined by size of outflow
 - ► MFHS < 0 and cov(MFHS,P)>0
- ► Key assumption: Mutual funds hypothetical trading *not* based on funds private information about the firms' fundamentals

Step 2: Decompose Stock Price (into U and (P - U))

Decompose normalized stock price (Tobin's Q)

$$Q_{i,t} = \phi \times \underbrace{\textit{MFHS}_{i,t}}_{\mbox{Noise due to}} + \lambda_i + \delta_t + \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\textrm{Noise due to}}_{\mbox{Mutual Funds}} + \lambda_i + \delta_t + \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} + \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} + \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} + \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} + \underbrace{\upsilon_{i,t}}_{\mbox{"Fundamental"}} \\ \underbrace{\upsilon_{i,t}}_{\m$$

- ϕ >0 and significant (strong)
- ► MFHS_{-i,t} = "Firm Non-Fundamentals"
- ► Construct $Q_{-i,t}^* = v_{-i,t}^* \Rightarrow$ "Firm Fundamentals"

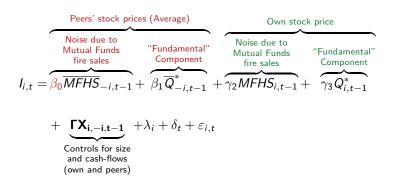
Step 3: Estimate Investment to Noise Sensitivity to Peers

- ▶ Identify **product market peers** (the -i)
 - ▶ Text-based Network Industry Classification (Hoberg and Philips, 2015) \Rightarrow Firms share the same **growth opportunities**
 - MFHS_{-i,t} = average MFHS_{i,t} over peers of firm i ⇒ "Peers' Non-Fundamentals"
 - $ightharpoonup \overline{Q}_{-i,t}^* = ext{average } Q_{i,t}^* ext{ over peers of firm } i \Rightarrow \text{"Peers' Fundamentals"}$
- ► Estimate investment-to-noise sensitivity
 - ► Compustat sample 1996–2011

Step 3: Estimate Investment to Noise Sensitivity to Peers

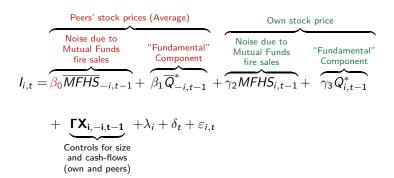
- ▶ Identify **product market peers** (the -i)
 - ► Text-based Network Industry Classification (Hoberg and Philips, 2015) ⇒ Firms share the same growth opportunities
 - MFHS_{-i,t} = average MFHS_{i,t} over peers of firm i ⇒ "Peers' Non-Fundamentals"
 - ▶ $\overline{Q}_{-i,t}^*$ = average $Q_{i,t}^*$ over peers of firm $i \Rightarrow$ "Peers' Fundamentals"
- ► Estimate investment-to-noise sensitivity
 - ► Compustat sample 1996–2011

Empirical Specification



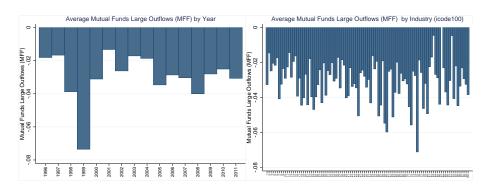
- ▶ Faulty Informant: $\beta_0 > 0$ (and $\beta_1 > \beta_0$) if managers cannot filter out the noise
- ⇒ Do we really have a <u>localized</u> non-fundamental shock?
 - ► *MFHS* truly valid instrument

Empirical Specification



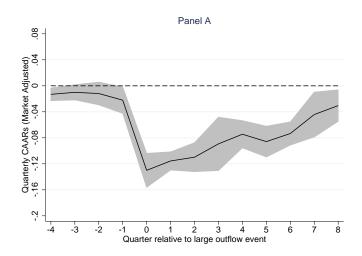
- ▶ Faulty Informant: $\beta_0 > 0$ (and $\beta_1 > \beta_0$) if managers cannot filter out the noise
- ⇒ Do we really have a <u>localized</u> <u>non</u>-fundamental shock?
 - MFHS truly valid instrument?

Instrument Validity I



- ▶ Panel A: No obvious clustering in time (non-systematic shocks)
- ▶ Panel B: No obvious clustering across industries

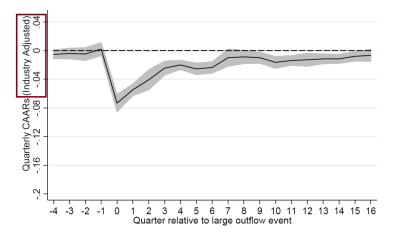
Non-fundamental shock? (MFHS in lowest decile)



Drop and reversal in prices (non-fundamental shocks)

Instrument Validity II

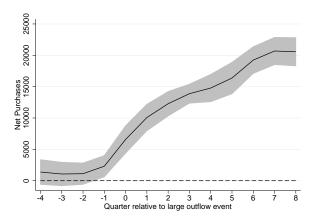
Downward price pressure survives industry adjustment



 MFHS capture localized non-fundamental shocks and not industry-wide shocks

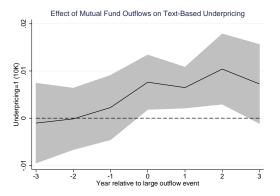
Instrument Validity III

▶ Insider trading around the fire-sale event



- ► Managers trade *against* their own price pressure (buy when price drops)
- ▶ Some of them detect the noise in their own price

Instrument Validity IV



- ► Firms mention non-fundamental shocks in their 10K reports
- ► Keywords: underpricing, underpriced, undervaluation, undervalued

Main Result

▶ 1 sd decrease in peers' noise \implies 1.8 p.p. decrease in investment (5% mean)

Dependent variable	Capex/PPE	
	Coeff	t-stat
\overline{MFHS}_{-i}	0.018***	7.51
\overline{Q}_{-i}^*	0.029***	12.71
$MFHS_i$	0.011***	6.55
Q_i^*	0.081***	27.52
Obs. Controls Firm FE Year FE	45,388 Yes Yes Yes	

Main Result

- ▶ 1 sd decrease in peers' noise \implies 1.8 p.p. decrease in investment (5% mean)
- ▶ Investment two times more sensitive to "fundamentals"

Dependent variable	Capex/PPE	
	Coeff	t-stat
$\overline{\mathit{MFHS}}_{-i}$	0.018***	7.51
\overline{Q}_{-i}^*	0.029***	12.71
$MFHS_i$	0.011***	6.55
Q_i^*	0.081***	27.52
Obs. Controls Firm FE Year FE	45,388 Yes Yes Yes	

Main Result

▶ Inv. also (<u>less</u>) sensitive to noise in own stock price (1.1pp)

Dependent variable	Capex/PPE	
	Coeff	t-stat
\overline{MFHS}_{-i}	0.018***	7.51
\overline{Q}_{-i}^*	0.029***	12.71
$MFHS_i$	0.011***	6.55
Q_i^*	0.081***	27.52
Obs. Controls Firm FE Year FE	45,388 Yes Yes Yes	

Main Result

- ▶ Inv. also (<u>less</u>) sensitive to noise in **own** stock price (1.1pp)
- ▶ But inv. 8 times more sensitive to "fundamentals" ⇒ Managers filter out noise better in their own stock price

Dependent variable	Capex/PPE		
	Coeff	t-stat	
\overline{MFHS}_{-i}	0.018***	7.51	
\overline{Q}_{-i}^*	0.029***	12.71	
$MFHS_i$	0.011***	6.55	
Q_i^*	0.081***	27.52	
Obs.	45,388		
Controls	Yes		
Firm FE	Yes		
Year FE	Yes		

Main Result

- ▶ $\beta_0 > 0$ ⇒ Rejects null "No ripple effect via imperfect filtering"
- Localized non-fundamental shocks of peers' prices affect a firm investment after controlling for its own stock price (and other drivers)

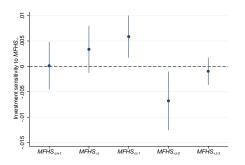
Dependent variable	Capex/PPE		
	Coeff	t-stat	
$\overline{\mathit{MFHS}}_{-i}$	0.018***	7.51	
\overline{Q}_{-i}^*	0.029***	12.71	
$MFHS_i$	0.011***	6.55	
Q_i^*	0.081***	27.52	
Obs. Controls Firm FE Year FE	45,388 Yes Yes Yes		

Temporary vs Permanent Effect

Imperfect filtering: ex-ante rational, but ex-post mistake ⇒ Do managers correct?

Temporary vs Permanent Effect

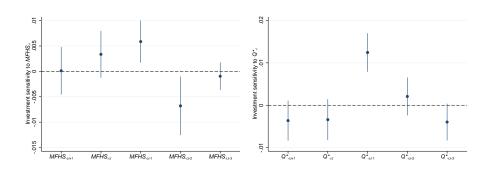
Imperfect learning: ex-ante rational, but ex-post mistake ⇒ Do managers correct?



Non-fundamental shocks: effect transient (mistake corrected)

Temporary vs Permanent Effect

Imperfect learning: ex-ante rational, but ex-post mistake ⇒ Do managers correct?



- Non-fundamental shocks: effect transient (mistake corrected)
- ► Fundamental shock: Permanent effect on capital stock (<u>not</u> corrected)

Other Results

- ▶ In the cross-section investment-to-noise sensitivity
- 1. ... decreases when managers are better informed

- Insider trades are more profitable
- Firm affected itself by the same shock in the past
- Analysts detect the mispricing of peers
- 2. ... increases when peers' stock prices are more informative

- Higher stock prices ability to forecast future earnings (Bai, Philipon, and Savov, 2014)
- ▶ Lower firm-specific return variation (Roll, 1988; Durnev et al., 2004)
- Lower analyst average earnings forecast error
- ⇒ Uniquely predicted by the faulty informant channel

Other Results

- ▶ In the cross-section investment-to-noise sensitivity
- 1. ... decreases when managers are better informed

- ▶ Insider trades are more profitable
- Firm affected itself by the same shock in the past
- Analysts detect the mispricing of peers
- 2. ... increases when peers' stock prices are more informative

- Higher stock prices ability to forecast future earnings (Bai, Philipon, and Savov, 2014)
- ▶ Lower firm-specific return variation (Roll, 1988; Durnev et al., 2004)
- Lower analyst average earnings forecast error
- ⇒ <u>Uniquely</u> predicted by the faulty informant channel

Alternative Stories

- ► Financing channel (e.g. Baker et al., 2003; Shleifer and Vishny, 1992)
 - Capital providers (e.g. bankers) rely on peers' stock prices to set lending costs
 - ► Fire sales of peer stocks trigger real assets fire sales ⇒ lower firm collateral value
- ► Pressure channel (e.g. Stein, 1989)
 - ► Increase risk of being taken over / fired ⇒ cut investment to boost short-term cash-flow (and stock price)
 - Effort provision due to compensation indexed on peers' performance (RPE)
- ► Investment complementarity channel
 - Investment respond to investment, not stock prices
- Reminder: perform several tests to rule out these channels

Alternative Stories

- ► Financing channel (e.g. Baker et al., 2003; Shleifer and Vishny, 1992)
 - Capital providers (e.g. bankers) rely on peers' stock prices to set lending costs
 - ► Fire sales of peer stocks trigger real assets fire sales ⇒ lower firm collateral value
- ▶ Pressure channel (e.g. Stein, 1989)
 - ► Increase risk of being taken over / fired ⇒ cut investment to boost short-term cash-flow (and stock price)
 - Effort provision due to compensation indexed on peers' performance (RPE)
- ► Investment complementarity channel
 - Investment respond to investment, not stock prices
- Reminder: perform several tests to rule out these channels

Capital Allocation Within Firms

- ► Similar test, at the **Firm** × **Division** × **Year level**
 - Investment within firm (across divisions)
- ► Conglomerate: Compustat segment FF48 industries (Krueger et al. 2014)
- ▶ 3,409 distinct conglomerate firms, operating a total of 8,342 divisions over the 1996-2011 period.
- ▶ Investment for division *d* of firm *i* at year *t*:

$$I_{i,d,t} = \lambda_{i,d} + \frac{\delta_{i,t}}{\delta_{i,t}} + \alpha_0 \overline{Q}_{-i,d,t-1}^* + \alpha_1 \overline{MFHS}_{-i,d,t-1} + \Gamma \mathbf{X}_{-i,d,t} + \varepsilon_{i,d,t}$$

 $lackbox{\delta_{i,t}}$: Firm imes Year FE remove *time-varying* unobserved heterogeneity at the *firm* level

Within-Conglomerate: Reallocation Across <u>Divisions</u>?

- ► Similar test, at the Firm × Division × Year level
- Inv. in division sensitive to noise in stock prices of that division's peers. Noise influences capital allocation WITHIN firm

Dependent variable:	Capex/A	
	Coeff	t-stat
\overline{MFHS}_{-i}	0.0044**	(2.43)
\overline{Q}_{-i}^*	0.0055***	(3.40)
Obs. Firm-Division FE Firm × Year FE	63,330 Yes Yes	

Within-Conglomerate: Reallocation Across <u>Divisions</u>?

- ► Similar test, at the Firm × Division × Year level
- ► Inv. in division sensitive to noise in stock prices of that division's peers. Noise influences capital allocation WITHIN firm
- ▶ Spe absorbs <u>all</u> time-varying firm-level variables (e.g. P_i , U_i , $MFHS_i$, etc.)

Dependent variable:	Capex/A	
	Coeff	t-stat
\overline{MFHS}_{-i}	0.0044**	(2.43)
\overline{Q}_{-i}^*	0.0055***	(3.40)
Obs. Firm-Division FE Firm × Year FE	63,330 Yes Yes	

Within-Conglomerate: Reallocation Across <u>Divisions</u>?

- Rules out other stories because cost of financing / access to financing / CEO incentives / CEO compensation same across divisions
 - Can explain investment allocation across firms ... BUT NOT across divisions for the SAME firm in the SAME year

Dependent variable:	Capex/A		
	Coeff	t-stat	
\overline{MFHS}_{-i}	0.0044**	(2.43)	
\overline{Q}_{-i}^*	0.0055***	(3.40)	
Obs.	63,330		
Firm-Division FE	Yes		
Firm × Year FE	Yes		

Alternative: Cost of Capital Channel

- ▶ Firm-level measures of financing costs and access to external capital
 - Average annual CDS spreads: Markit
 - Average spreads on new (private) debt issues: Dealscan
 - Text-based measures of financing constraints (Hoberg and Maksimovic (2015))
 - Textual analysis of the Management's Discussion and Analysis (MD&A) section of firms' 10Ks
 - Score of equity-market and debt-market constraints

Alternative: Cost of Capital Channel

Dep. Variable	CDS Spread	New Debt Spread	Text EqCons.	Text Debt-Cons.
	(1)	(2)	(3)	(4)
MFHS _{-i}	0.075	0.032**	-0.000	0.001
	(1.08)	(2.24)	(-0.27)	(1.22)
\overline{Q}_{-i}^*	0.027	-0.025**	-0.001**	0.000
	(0.55)	(-2.07)	(-2.45)	(0.66)
$\overline{\mathit{CF}/\mathit{A}}_{-i}$	-0.409***	-0.062***	-0.001*	-0.001
	(-3.36)	(-2.77)	(-1.94)	(-1.32)
\overline{Size}_{-i}	-0.098	-0.007	0.000	0.001
	(-1.62)	(-0.36)	(0.52)	(1.31)
$MFHS_i$	-0.360**	0.009	-0.000	0.001
	(-2.19)	(0.74)	(-0.37)	(1.09)
Q_i^*	-0.116*	-0.132***	-0.001***	0.002***
	(-1.75)	(-9.14)	(-4.57)	(5.29)
CF/A_i	-1.140***	-0.358***	-0.001***	-0.006***
	(-4.65)	(-10.79)	(-3.24)	(-9.38)
Size _i	-0.893**	-0.595***	0.000	-0.001
	(-2.24)	(-12.51)	(0.02)	(-0.47)
Obs.	3,765	10,759	33,198	33,198
Firm FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Adj. R ²	0.708	0.759	0.580	0.667

Alternative: Pressure Channel

- ► Firm-level measures of CEOs risk
 - Probability of takeover offer: SDC
 - ► CEO turnover: Execucomp
- ▶ Use of relative performance evaluation (RPE)
 - ▶ users vs non-users (Aggrawal and Samwick (1999))
 - sensitivity of compensation to peers' stock returns (industry-level)

Alternative: Pressure Channel

Dep. Variable Sub-sample:	Prob(Target)	CEO Turnover	Capex/PPE RPE = 1	Capex/PPE RPE = 0
	(1)	(2)	(3)	(4)
\overline{MFHS}_{-i}	0.004	0.002	0.019***	0.017***
	(1.43)	(0.38)	(6.08)	(4.83)
\overline{Q}_{-i}^*	-0.006***	0.005	0.032***	0.026***
	(-3.54)	(1.50)	(9.64)	(8.40)
$\overline{CF/A}_{-i}$	0.006*	0.000	0.019***	0.004
	(1.88)	(0.07)	(3.82)	(0.87)
\overline{Size}_{-i}	0.002	0.007	-0.005	0.009*
	(0.54)	(1.31)	(-1.13)	(1.91)
$MFHS_i$	-0.007***	-0.003	0.010***	0.010***
	(-3.43)	(-0.76)	(4.12)	(4.52)
Q_i^*	-0.010***	-0.010***	0.083***	0.077***
	(-5.95)	(-3.36)	(19.15)	(18.24)
CF/A_i	-0.015***	-0.036***	0.030***	0.043***
	(-5.58)	(-5.17)	(5.69)	(8.56)
Sizei	0.060***	0.006	-0.068***	-0.084***
	(7.92)	(0.53)	(-4.56)	(-5.36)
Obs.	45,388	18,121	23,518	21,870
Firm FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Adj. R ²	0.307	0.127	0.568	0.553

Alternative: Investment Complementarity Channel

Dependent variable:	e: Capex/PPE					
Peers Average:	EW	VW	Median	5 Closest	Agg.	EW
	(1)	(2)	(3)	(4)	(5)	(6)
MFHS_i	0.009***	0.011***	0.004**	0.011***	0.014***	0.009***
	(3.85)	(5.20)	(2.19)	(3.85)	(4.53)	(3.34)
\overline{Q}_{-i}^*	0.018***	0.022***	0.019***	0.017***	0.019***	0.017***
	(7.94)	(9.20)	(7.80)	(7.39)	(8.17)	(6.60)
$\overline{\mathit{CF}/\mathit{A}}_{-i}$	0.009***	0.005	0.007**	0.003	0.004*	-0.002
	(2.55)	(1.47)	(2.06)	(1.05)	(1.66)	(-0.50)
$\overline{\textit{Size}}_{-i}$	0.002	0.002	-0.000	0.001	-0.000	-0.001
	(0.76)	(0.75)	(-0.13)	(0.42)	(-0.13)	(-0.26)
$\overline{\mathit{Capex}/\mathit{PPE}}_{-\mathit{i}}$	0.051*** (11.42)	0.034*** (9.17)	0.049*** (10.87)	0.043*** (11.85)	-0.000 (-0.43)	
MFHS _i	0.010***	0.011***	0.011***	0.011***	0.013***	0.009***
	(6.01)	(6.36)	(6.56)	(6.43)	(7.61)	(5.31)
Q_i^*	0.079***	0.080***	0.080***	0.078***	0.086***	0.076***
	(26.84)	(27.08)	(27.07)	(27.23)	(28.99)	(24.92)
CF/A_i	0.034***	0.035***	0.034***	0.035***	0.037***	0.032***
	(10.10)	(10.25)	(10.08)	(10.33)	(10.77)	(9.13)
Size _i	-0.074***	-0.075***	-0.071***	-0.071***	-0.068***	-0.075***
	(-6.86)	(-6.87)	(-6.60)	(-6.60)	(-6.24)	(-6.50)
Obs.	45,355	45,390	45,355	45,355	45,357	45,388
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	No
Ind-Year FE	No	No	No	No	No	Yes
Adj. R ²	0.489	0.487	0.489	0.497	0.487	0.498

Conclusion

- ▶ When filtering is imperfect
 - Non-fundamental shocks to prices (noise) affect investment decisions of peers because investment loads on noise
 - Average manager not able to fully filter out the noise ⇒ lead to (ex post) inefficient decisions
- Manager rational and conditions on informative but noisy signals (ex-ante efficient)
- Open question: effect on aggregate investment and misallocation?

Thank You

Construction of Mutual Fund Hypothetical Sales

▶ Step 1 - Mutual Fund Outflow (fund j in quarter q of year t)

$$Flow_{j,q,t} = rac{TNA_{j,q,t} - TNA_{j,q-1,t} imes (1 + Return_{j,q,t})}{TNA_{j,q-1}}.$$

► Step 2 - Fund's *j* holdings of stock *i* (in dollar value)

$$SHARES_{i,k,q,t} \times Price_{i,q,t}$$

lacktriangle Step 3- Hypothetical net selling at stock level when $\mathit{Flow}_{j,q,t} \leq -0.05$

$$MFHS_{i,q,t}^{dollars} = \sum_{i} (Flow_{j,q,t} \times SHARES_{j,i,q} \times Price_{i,q,t})$$

Step 4- Sum over four quarter

$$\textit{MFHS}_{i,t} = \frac{\sum_{q=1}^{q=4} \sum_{j} (\textit{Flow}_{j,q,t} \times \textit{SHARES}_{j,i,q,t} \times \textit{Price}_{i,q,t})}{\mathsf{Dollar \ Volume \ Trading}_{i,q,t}}$$

Manager Private Information

Dep. Variable:	Capex/PPE					
Int. Variable ϕ :	Ins.CARs (1)	Prev. Sales (2)	Common MF (3)	Analyst Discount (4)		
\overline{MFHS}_{-i}	0.018*** (7.54)	0.019*** (6.95)	0.026*** (6.53)	0.024*** (8.20)		
$\overline{\textit{MFHS}}_{-i} \times \phi$	-0.052 (-1.56)	-0.008 (-1.54)	-0.054*** (-3.97)	-0.006** (-2.17)		
Obs.	45,388	45,388	45,388	33,398		
Firm FE	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes		
Controls	Yes	Yes	Yes	Yes		
Adj. R ²	0.394	0.393	0.397	0.406		

Peers' Stock Price Informativeness

Dep. Variable	Capex/PPE				
Int. Variable ϕ :	BPS (1)	1-R2 (2)	Prev. Sales (3)	Analyst Disp (4)	
$\overline{\mathit{MFHS}}_{-i}$	0.016***	0.009*	0.024***	0.031***	
	(6.16)	(1.70)	(7.17)	(7.44)	
$\overline{\textit{MFHS}}_{-i} \times \phi$	0.017*	0.005*	-0.453***	-0.023***	
	(1.83)	(1.82)	(-3.06)	(-2.48)	
Obs.	45,388	45,089	44,360	45,178	
Firm FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	Yes	
Adj. R ²	0.394	0.394	0.397	0.395	

x-section

Results

Dependent variable		Capex/PPE			
Peers Average:	E-W	S-W	Median	5 closest	Agg.
	(1)	(2)	(3)	(4)	(5)
$\overline{\mathit{MFHS}}_{-i}$	0.018***	0.015***	0.010***	0.015***	0.014***
	(7.51)	(7.12)	(4.95)	(7.56)	(4.51)
\overline{Q}_{-i}^*	0.029***	0.028***	0.029***	0.024***	0.019***
	(12.71)	(12.17)	(12.09)	(10.54)	(8.19)
$MFHS_i$	0.011***	0.011***	0.012***	0.012***	0.013***
	(6.55)	(6.70)	(7.23)	(7.13)	(7.60)
Q_i^*	0.081***	0.081***	0.082***	0.082***	0.086***
	(27.52)	(27.42)	(27.89)	(28.16)	(29.02)
Obs.	45,388	45,388	45,388	45,388	45,388
Firm FE	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes
Adj. R ²	0.485	0.484	0.485	0.483	0.482

Estimating Investment-Noise Sensitivity (β_{-i})

- Econometrician does not perfectly observe manager's signals (s_m) and noise in prices $(s_{u_i}$ and $s_{u_{-i}})$, only stock prices $(P_i$ and $P_{-i})$
- We can recover $\beta_{-i} > 0$ if we can observe part of the noise
 - ▶ Let $u_{-i} = u_{-i}^o + u_{-i}^{no}$ with u_{-i}^o an **observed** component in peer's price
 - ▶ Assume u_{-i}^o and u_{-i}^{no} independent and normally distributed

$$K_i^* = \underbrace{\delta_i P_i^* + \gamma_i u_i^o}_{P_i} + \underbrace{\delta_{-i} P_{-i}^* + \beta_{-i} u_{-i}^o}_{P_{-i}} + \epsilon_i$$

- $P_{-i}^* = \widetilde{\theta_i} + u_{-i}^{no} = P_{-i} \mathsf{E}(P_{-i} | u_{-i}^o) \text{ (and } P_i^* = \widetilde{\theta_i} + u_i^{no} = P_i \mathsf{E}(P_i | u_i^o))$
- $ightharpoonup P_{-i}^*$ (P_i^*) is the residual of a regression of P_{-i} (P_i) on u_{-i}^o (u_i^o).
- ▶ This is estimable if we have proxies for u_{-i}^o and u_i^o

